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Abstract

Background

Technology enables the continuous monitoring of personal health parameter data during

pregnancy regardless of the disruption of normal daily life patterns. Our research group has

established a project investigating the usefulness of an Internet of Things–based system

and smartwatch technology for monitoring women during pregnancy to explore variations in

stress, physical activity and sleep. The aim of this study was to examine daily patterns of

well-being in pregnant women before and during the national stay-at-home restrictions

related to the COVID-19 pandemic in Finland.

Methods

A longitudinal cohort study design was used to monitor pregnant women in their everyday

settings. Two cohorts of pregnant women were recruited. In the first wave in January-

December 2019, pregnant women with histories of preterm births (gestational weeks 22–

36) or late miscarriages (gestational weeks 12–21); and in the second wave between Octo-

ber 2019 and March 2020, pregnant women with histories of full-term births (gestational

weeks 37–42) and no pregnancy losses were recruited. The final sample size for this study

was 38 pregnant women. The participants continuously used the Samsung Gear Sport

smartwatch and their heart rate variability, and physical activity and sleep data were col-

lected. Subjective stress, activity and sleep reports were collected using a smartphone

application developed for this study. Data between February 12 to April 8, 2020 were

included to cover four-week periods before and during the national stay-at-home
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restrictions. Hierarchical linear mixed models were exploited to analyze the trends in the out-

come variables.

Results

The pandemic-related restrictions were associated with changes in heart rate variability: the

standard deviation of all normal inter-beat intervals (p = 0.034), low-frequency power (p =

0.040) and the low-frequency/high-frequency ratio (p = 0.013) increased compared with the

weeks before the restrictions. Women’s subjectively evaluated stress levels also increased

significantly. Physical activity decreased when the restrictions were set and as pregnancy

proceeded. The total sleep time also decreased as pregnancy proceeded, but pandemic-

related restrictions were not associated with sleep. Daily rhythms changed in that the partici-

pants overall started to sleep later and woke up later.

Conclusions

The findings showed that Finnish pregnant women coped well with the pandemic-related

restrictions and lockdown environment in terms of stress, physical activity and sleep.

Introduction

The disruption of societal patterns results in negative effects for pregnant women, but the

extent and importance of such negative effects are unclear. Pregnancy and newborn outcomes

that have been monitored after natural or manmade disasters are inconsistent [1]. Some nega-

tive impacts were noted for pregnant women and their newborns after the 2008 global eco-

nomic crisis and the World Trade Center attacks in 2001. However, many of these effects were

observed through single-time-point assessments of pregnant women’s stress levels, or the stud-

ies retrospectively analysed pregnancy and newborn health outcomes years after the events

had occurred [1, 2]. Psychological distress as a response to traumatic events has been reported,

but little work has been done to investigate daily patterns of wellness during disasters [1].

Thus, post-disaster pregnancy surveillance should be improved.

Identifying increased levels of stress and disruptions in daily patterns of pregnant women’s

physical activity and sleep is important, as they may be deemed indicators for well-being in

pregnancy [3]. High levels of maternal antenatal stress are associated with an increased risk of

pregnancy complications, such as preterm birth [4]. Often, physical activity and its intensity

decrease as pregnancy progresses. Many women are inactive during pregnancy despite the evi-

dence that moderate, low-risk activities are safe and beneficial during all stages of pregnancy

[5]. Sleep disturbances, such as insomnia and sleep fragmentation stemming from hormonal

and physiological changes, are common during pregnancy [6, 7]. Stress, physical activity and

sleep are interdependent; for example, stress may escalate sleep disorders, which have harmful

effects on maternal health [8]. Physical activity in pregnancy has been linked to sustained

mobility, healthy sleep patterns and usual life activities [9]. Adequate physical activity and

sleep can also mitigate high levels of stress during pregnancy [10].

Modern technology enables the continuous monitoring, tracking and transmitting of per-

sonal health parameter data during pregnancy [11]. In light of the current disruption of nor-

mal daily life patterns due to the COVID-19 pandemic, the use of wearable devices and mobile

apps for collecting personal health parameters for use by health care providers and public
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health agencies is highlighted among many health care organizations and areas of clinical prac-

tice. The continuous monitoring of maternal antenatal stress, physical activity and sleep

parameters before and during the current COVID-19 could provide unique information about

any disruptions in the well-being of pregnant women. The aim of this study was to examine

daily patterns of well-being (stress, physical activity and sleep) in pregnant women before and

during the national stay-at-home restrictions related to the COVID-19 pandemic in Finland.

Methods

Study design

A longitudinal cohort study design was used. This study is part of a project investigating the

usefulness of an Internet of Things (IoT)-based system and smartwatch technology for moni-

toring women during pregnancy to explore variations in stress, physical activity and sleep. The

ultimate goal of the project is to develop a ubiquitous monitoring and early detection and pre-

vention system for pregnant women. The interest is in variations in stress defined by heart rate

variability, physical activity indicated with step counts and duration of sleep; all the parameters

are followed using a smartwatch. The participants were asked to wear a smartwatch continu-

ously from early pregnancy (gestational week 12–15) until three months postpartum. In our

pilot work, long-term monitoring with a smart wristband was evaluated feasible among preg-

nant women [11, 12]. A cohort within the sample from the ongoing study had specific expo-

sure to current events in Spring 2020 related to regulations for preventing the spread of the

SARS-CoV-2 (i.e. stay-at-home orders and travel bans).

Study participants

The eligible participants were Finnish-speaking women with singleton pregnancies at gesta-

tional weeks 12–15. They each had to have a smartphone with Android or iOS as an operating

system. The participants were recruited through social media advertisements or maternity

clinics in two waves: 1) pregnant women with histories of preterm births (gestational weeks

22–36) or late miscarriages (gestational weeks 12–21) were recruited in January-December

2019, and 2) pregnant women with histories of full-term births (gestational weeks 37–42) and

no pregnancy losses were recruited between October 2019 and March 2020.

Pregnant women contacted the researchers by email, and/or the researcher phoned the

interested women, and based on their initial communication and verbal study information, a

meeting was scheduled. A total of 62 pregnant women were recruited. At the time of the

COVID-19 pandemic and restrictions in Finland, 21 women had given birth and therefore

were excluded. Three women were withdrawn from the study. Thus, the final sample size for

this study was 38 pregnant women, with eight of them belonging to the high-risk pregnancy

group.

Data collection

Each participant was provided a Samsung Gear Sport smartwatch, which has shown acceptable

validity regarding sleep in everyday context [13] and regarding step count in a treadmill test

[14]. The participants were asked to wear the smartwatches continuously from the recruitment

until three months postpartum, and they were to send the data from the smartwatches daily or

at least weekly. An IoT-based monitoring system was developed (Fig 1). The photoplethysmo-

graphy (PPG) and inertial measurement unit (IMU) sensors of the smartwatch were utilized.

A Tizen-based application was developed to collect 12 minutes of the signals—with a 20-Hz

sampling frequency—every second hour. The setup was determined to acquire sufficient data
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for heart rate and heart rate variability (HRV) analysis, considering the smartwatch’s limited

battery life. HRV can be used as an objective assessment of stress in pregnant women [15, 16].

However, interpreting HRV is challenging due to individual variations and many variables

influencing the values. Long-term monitoring of participants enables to detect trends in HRV

and possible novel data about pregnant women [17]. The smartwatch also provided continu-

ously collected physical activity data (step counts and inactive time) and sleep events (sleep

start and end times). Thus, the total sleep time (TST) and wake after sleep onset (WASO)

could be determined.

A cross-platform mobile application was developed for the subjective data collection.

The application was installed in the participants’ smartphones. The participants used the

application to complete the questionnaires and weekly questions. A background question-

naire and validated questionnaires concerning depression (EPDS) [18] and pregnancy

anxiety (PRAQ-R2) [19] were completed after the recruitment. In weekly questions that

appeared in the application every seven days, the participants assessed their levels of stress,

levels of activity and sleep quality during the past week with a numerical scale from 0 to 100.

Zero indicated no stress/ no physical activity/ very poor sleep quality, and 100 indicated a

very high level of stress/ very high level of physical activity/ very good sleep quality. On

March 18, a weekly question related to the COVID-19 pandemic was added to the applica-

tion. The participants were asked to assess their levels of worry regarding the epidemic in

Finland with a numerical scale of 0–100. The weekly questions were developed for this

study and therefore not validated. The participants could also contact the researchers via the

application, if necessary. However, two-way communication was not possible, and the

researchers responded by email. Note that the participants could not view their data via the

application.

Data between February 12 to April 8, 2020, were included to cover four-week periods before

and after March 12, 2020, which was a significant date in Finland regarding the COVID-19

pandemic. In general, most Finnish people acknowledged the seriousness of the SARS-CoV-2

virus and COVID-19 disease. On March 12, the Finnish government recommended canceling

all large public events and recommended avoiding close contact with other people, especially

with at-risk groups. Since that day, national restrictions tightened quite rapidly. On March 16,

a nationwide lockdown was declared, and people were strongly urged to stay at home, main-

tain social distancing and follow careful hygiene procedures. Schools and universities, as well

as libraries, museums and other public venues, were closed, and working at home was strongly

Fig 1. IoT-based remote monitoring system. First, the sensor layer performs health data collection, utilizing a smartwatch and a smartphone. Second,

the gateway layer acts as a bridge between the devices and the remote server, transmitting the collected data to our remote servers. Third, the cloud layer

is responsible for data storage and data analysis. A user interface is also provided for data visualization.

https://doi.org/10.1371/journal.pone.0246494.g001
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recommended. Outdoor activities alone or with adequate distance from others have been

allowed throughout the restrictions.

Data preprocessing

Stress. We exploited PPG signals to extract heart rate and HRV parameters. PPG is a sim-

ple and energy-efficient optical method that is widely used to remotely track heart activities

[17, 20]. However, the method is susceptible to motion artifacts and environmental noises that

are inevitable in home-based health monitoring. Therefore, we developed a method for remov-

ing unreliable signals, thus preventing invalid analysis and misinterpretation. In this regard,

we utilized morphological features of PPG signals to automatically label every 10 seconds of

PPG signals to be able to select reliable signals for the analysis [21].

HRV analyses were performed with five-minute recordings of reliable PPG signals collected

during sleep time when the resting heart rate level was the lowest and less artifacts existed [22].

The sampling frequency of the collected PPG signals was 20 Hz. Therefore, HRV parameters

that were with low error rates using the 20-Hz PPG signals were extracted [23].

For HRV extraction, we first implemented a peak detection method for retrieving the peaks

corresponding to each heartbeat. Second, normal inter-beat intervals (NNIs) were computed.

Then, for every reliable five-minute signal, we calculated the root mean square of the successive

differences (RMSSD) of NNIs, the standard deviation of all NNIs (SDNN), low-frequency (LF)

power (0.04–0.15 Hz), high-frequency (HF) power (0.15–0.4 Hz) and the LF-to-HF ratio (LF/

HF). The analysis was implemented using the HeartPy and SciPy libraries in Python [24]. The

outliers were removed, and the average values of HRV parameters during sleep were obtained.

Physical activity and sleep. The participants’ step counts, inactive time and sleep parame-

ters were provided via the Samsung watch. The daily data concerning physical activity were

considered to be valid if the user wore the device for at least 10 hours while awake. The wearing

time was computed with the granularity of five minutes, utilizing logged events obtained

through the watch, such as hand movements, step counts, the heart rate and sleep.

Two sleep parameters per night were calculated: TST and WASO. TST refers to the total

time that our subject was sleeping during the night. WASO is the total awake time after the

start of sleep and before the final awakening. To validate sleep intervals for such sleep events,

we visualized various sources of data, including the steps and hand movements that the watch

reported. Using such visualizations, we were able to retrieve actual sleep intervals by manually

looking at the data.

Statistical analysis

The characteristics of the participants were compared between the high-risk and low-risk

groups with chi-square test, or two-sample t-test (Mann-Whitney U-test if non-normal data).

Hierarchical linear mixed models were exploited to analyze the trends in between-person and

within-person changes in the dependent variable of interest. We did this using the notation

that Raudenbush-Bryk defined, as well as the recommendations of Bolger-Laurenceau [25,

26]. We considered daily values in two different time intervals: four weeks before and four

weeks during the COVID-19 pandemic (a total of 56 days), including 38 subjects in each inter-

val. All participants were combined in one group in the analyses since there were no significant

differences in their background characteristics, except gestational weeks during the study

(Table 1). The dependent variables in these models are measurements related to HRV (the

SDNN, RMSSD, HF power, LF power), physical activity (step counts, inactive time) and sleep

(TST, WASO). In the model, the single within-subject independent variable was time (day),

and the between-subject independent binary variables were the pandemic group (before or
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during the pandemic), and education level (university level or lower level education). Further,

the study group (high-risk or low-risk pregnancy) was used as between-subject independent

binary variable in the models to detect possible differences between the groups. Only night-

time data were included in the analyses; thus, the time of the day was controlled. However, the

complex variability of healthy heart could not be completely controlled in such a long-term

monitoring with PPG signal [17, 22]. We used the Statsmodel package of Python to do the

aforementioned analyses [27].

To deal with the outliers of the measurements in physical activity, sleep and heart rate vari-

ability, we re-scaled the values using z-score, and we kept entries with absolute values of less

than 3 (it captures 99.73% of the data). Moreover, we leveraged the paired t-test to compare

the difference in subjective data before and during the pandemic. The null hypothesis was a

zero mean difference between the variables of interest. To visualize the difference between

before and during the pandemic, we utilized the complementary cumulative distribution func-

tion (CCDF) and the Bland-Altman plot.

Missing data were handled using pairwise deletion by filtering data for all parameters classi-

fied as unreliable due to non-available data (i.e. errors in device recording and participants not

wearing devices) as well as outlier recordings not classified as reliable [28].

Ethical issues

A favourable statement (Dnro: 1/1801/2018) from the Ethics Committee of the Hospital Dis-

trict of Southwest Finland was obtained before data collection. A written informed consent

was obtained from each participant.

Table 1. The characteristics of the participating pregnant women.

Variable Participants n = 38 With high-risk pregnancy n = 8 With low-risk pregnancy n = 30 p value

Age (years), mean (SD) 31.4 (4.3) 32.1 (3.6) 31.2 (4.5) 0.595

Gestational weeks at March 12th, mean (SD) 23.5 (6.1) 29.9 (1.9) 21.7 (5.7) <0.001

BMI before pregnancy, mean (SD) 26.3 (6.0) 25.4 (4.0) 26.7 (6.3) 0.820

Planned pregnancy, n (%) 33 (87) 6 (75) 27 (90) 0.265

Chronic illness�, n (%) 11 (29) 4 (50) 7 (23) 0.139

Smoking during pregnancy, n (%) 0 (0) 0 0 -

Education, n (%)
Highschool 18 (48) 2 (25) 16 (53) 0.198

Vocational 10 (26) 4 (50) 6 (20)

University 10 (26) 2 (25) 8 (27)

Occupation, n (%)
Paid work 29 (76) 5 (63) 24 (80) 0.233

Unemployed 1 (3) 0 1 (3)

Student 5 (13) 1 (12) 4 (14)

Other 3 (8) 2 (25) 1 (3)

Living with partner, n (%) 37 (98) 7 (88) 30 (100) 0.211

Wearing smartwatch at work, n (%) 35 (92) 8 (100) 27 (90) 0.351

Depressive symptoms (EPDS score[i]), mean (SD) 5.0 (3.9) 5.4 (3.0) 4.8 (4.2) 0.388

Pregnancy-related anxiety (PRAQ-R2 score[ii]), mean (SD) 38.2 (7.3) 36.8 (5.4) 38.6 (7.7) 0.529

�migraine, colitis ulcerosa, hypothyroidism, fibromyalgia, SLE, or skin disease
[i]Scores from 0–30 (High scores indicate risk for Depressive symptoms)
[ii]Scores from 10–50 (High scores indicate signs of pregnancy related anxiety).

https://doi.org/10.1371/journal.pone.0246494.t001
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Results

Participants

A total of 38 pregnant women participated in this study and were followed eight weeks from

February 12 to April 8, 2020. Their gestational weeks during the COVID-19 outbreak in Fin-

land were 23.5 (SD 6.1) weeks on average. At the recruitment, the participants had no depres-

sive symptoms (mean EPDS score 5.0) or pregnancy-related anxiety (mean PRAQ-R2 score

38.2). There were no differences between the participants with high-risk and low-risk pregnan-

cies except the gestational weeks during the study period, since the recruitment of women with

high-risk pregnancies was performed earlier compared with the women with low-risk preg-

nancies (Table 1).

Stress

The hierarchical linear models showed that pandemic-related restrictions were associated

with changes in HRV. At the time the restrictions were set, the SDNN (p = 0.034), LF power

(p = 0.040) and LF/HF ratio (p = 0.013) increased compared with the weeks before the restric-

tions. However, the pandemic-related restrictions over time were also associated with the SDNN

(p = 0.008), showing a decreasing trend of the SDNN during the weeks during the restrictions.

The pandemic-related restrictions showed no association with the RMSSD or HF power (Fig 2).

The participants’ subjective levels of worry related to the pandemic in Finland were reason-

ably high. The mean value fluctuated from 61 (SD 21) via 56 (SD 18) to 60 (SD 20) during the

three first weeks during the restrictions, respectively. Based on the t-test of the evaluations of

the participants, their subjective stress levels were statistically significantly higher during the

restrictions compared with the weeks before (p = 0.008) (Fig 3).

Physical activity

Both pandemic-related restrictions (p = 0.001) and time (p = 0.013) were associated with the

participants’ daily total step counts. The step counts decreased as pregnancy proceeded and

especially when the restrictions were set.

Correspondingly, the daily inactive time increased during the study period, as pandemic-

related restrictions (p<0.001) and time (p<0.001) were both significantly associated with the

inactive time when the restrictions were set. However, the pandemic-related restrictions over

time were significantly associated with decreasing inactive time (p = 0.014) (Fig 4). The partici-

pants’ subjective evaluations of their weekly physical activity did not change (Fig 3).

Sleep

Pandemic-related restrictions were not associated with p = 0.266, the TST of the pregnant

women. However, TST decreased (p = 0.021) as pregnancy proceeded. The pandemic-related

restrictions were not significantly associated with the periods of WASO (p = 0.065).

The participants woke up a mean of 15 minutes (p = 0.007) later during the pandemic-

related restrictions compared with the weeks before the virus outbreak. Correspondingly, they

went to sleep approximately 10 minutes later; however, the change was not statistically signifi-

cant (p = 0.0504). Subjectively evaluated quality of sleep did not change based on the partici-

pants’ weekly evaluations (Fig 3).

Discussion

The COVID-19 pandemic seemed not to have major impacts on the daily patterns of Finnish

pregnant women. Their subjectively assessed stress increased, and some significant changes
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were detected in HRV. Physical activity decreased when the restrictions were set but also

because the pregnancy was proceeding, which is a common finding regarding pregnancy and

physical activity. TST decreased as pregnancy proceeded, but the pandemic-related restrictions

were not associated with sleep. However, the participants’ daily rhythms changed as they

started to sleep later as well as wake up later.

Some significant changes occurred in HRV patterns related to the pandemic. The changes

in HRV were somehow conflicting, as the increased SDNN might indicate a lower level of

stress, whereas increased LF power and an increased LF/HF ratio might indicate higher levels

of stress [29, 30]. However, during the follow-up, the SDNN started to decrease, probably

because pregnancy proceeded. The clinical significance of these small changes is difficult to

evaluate. Further, the function of heart is such a complicated system, and influenced, for exam-

ple, by individual physiological, mental and hormonal factors, thus interpretation of HRV

Fig 2. Trends in HRV parameters. The mean daily values with 95% confidence intervals of SDNN, RMSSD, LF, HF and LF/HF ratio during the eight-

week data collection period (56 days) (n = 28–34).

https://doi.org/10.1371/journal.pone.0246494.g002
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patterns measured in everyday settings is only indicative [22]. The changes detected in this

study with pregnant women, however, might be partly explained also by the physiological

decrease in HRV as pregnancy proceeds [16]. Both parasympathetic and sympathetic nervous

systems contribute to SDNN, thus 24-hour continuous instead of short-term monitoring

would provide more accurate values. LF power reflects baroreceptor activity and HF power is

more clearly correlated with stress or worry [22].

Pregnant women’s increased subjective experience of stress due to pandemic was not

reflected as a notable changes in autonomic cardiac control as measured with HRV. Despite

of the status of “high-risk” of some pregnant women, the participants in this study generally

did not suffer from depressive symptoms or did not seem to have pregnancy-related anxiety,

and therefore, they may have sufficient psychological resources for handling special circum-

stances, including the stay-at-home orders. Furthermore, the women in our study had access

to social reserves and resources, such as the statutory public benefit of a maternity grant

aimed at offsetting the costs of having a child [31]. This might have played a role in support-

ing good personal coping amidst the uncertainties and stressful restrictions related to the

global pandemic. Women with high-risk pregnancies may especially have higher levels of

stress and therefore limited resources for coping with unexpected challenges [32]. Thus, it is

important to identify those women who are at risk of inadequately coping with cumulative

stressful life events [33].

Fig 3. Subjective evaluations of stress, physical activity and sleep. Participants’ (n = 23) subjectively assessed level of stress, level of physical activity

and quality of sleep before and during the pandemic-related restrictions in a scale from 0 to 100 the higher value indicating a higher level of stress,

higher level of physical activity and better quality of sleep.

https://doi.org/10.1371/journal.pone.0246494.g003
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As expected, women’s daily step counts decreased and their inactive time increased as preg-

nancy proceeded [5]. Physical activity decreased significantly when the pandemic-related

restrictions were set, but based on the actual step counts, the situation stabilized quite fast.

Some of the women might have found new possibilities for exercising at home. Interestingly,

women were making changes to their sleep patterns by going to bed a little later and waking

up in the morning a little later. Some of the women started their maternity leaves and thus

were able to modify their daily rhythms. Some women probably began to work from home

according to the pandemic-related regulations, as the women in our study were highly edu-

cated. Distant working allowed for flexible working hours and environment—no commute to

work, and more flexibility with sleep timing—which allows for the implementation of person-

alized sleep and activity patterns [34].

In future studies, this IoT platform and device/app pairing could be used for the continuous

monitoring and viewing of parameter data by women and clinicians in real time. Understand-

ing and giving pregnant women insight into their own daily patterns of well-being, such as

stress, physical activity and sleep during pregnancy, could illuminate the extent to which

women are able to cope with stressful events and pregnancy-induced stress/anxiety. Women

can also work as partners with clinicians in the personalization of self-care goals during stress-

ful and uncertain times [35].

Limitations

The sample size was relatively small, and power analysis was not performed. However, due to

the continuous measurements by the smartwatch, the amount of data is considerable. The var-

iation in pregnancy weeks between the participants might have caused bias, which limits the

Fig 4. Trends in physical activity and sleep. The daily mean with 95% confidence intervals of daily steps, and daily inactive time

(n = 28–37), and total sleep time (TST) and wake after sleep onset (WASO) (n = 22–32) during the eight-week data collection

period (56 days).

https://doi.org/10.1371/journal.pone.0246494.g004
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conclusions. Furthermore, increasing pregnancy weeks was a confounding factor, as the preg-

nancy itself had an impact on a woman’s physiological parameters, such as HRV measures

[29]. The participating women were generally quite healthy; thus, the findings might differ in

other populations. HRV measures are individual and HRV is quite sensitive for many physio-

logical and mental factors, thus not controlling them in the analyses may have caused some

bias [17]. With PPG, it is recommended to have a sampling frequency of 25Hz, but with 20Hz,

the results could also be deemed reliable [23]. The frequency-domain measures especially

might need increased sampling frequency [22]. It has to be noted that the validity of the Sam-

sung Gear Sport has not been confirmed in measuring the heart rate variability, although

acceptable validity regarding sleep and step count has been achieved [13, 14]. The generaliz-

ability of the results may be limited, but this study provides unique and prospective data

about the daily patterns of well-being in pregnant women before and during the COVID-19

pandemic.

Conclusions

Women in this study were successful in coping with the current disruptions to their lives, pos-

sibly due to access to strong supportive social resources. The changes in stress, physical activity

and sleep were moderate and in line with increasing pregnancy weeks. The use of IoT technol-

ogies for the monitoring of daily patterns of well-being for pregnant women is modern and

effective for providing useful parameter information for the promotion of health and wellness.
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